Nevada National Security Site Performance Assessment Updates for New Waste Streams Greg Shott National Security Technologies, LLC Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting December 11 and 12, 2014 #### **Outline** - Area 5 Radioactive Waste Management Site (RWMS) - Introduce Area 5 RWMS design and performance - How does the performance assessment (PA) process manage future inventory uncertainty? - How to decide if a new or revised waste stream is acceptable under the Disposal Authorization Statement (DAS)? - Unreviewed disposal question (UDQ) process - Experience and examples #### **Area 5 RWMS** - Located in Frenchman Flat on the Nevada National Security Site (NNSS) - Remote location, 65 miles northwest of Las Vegas, NV - Site Federally owned, surrounded by Federally controlled land - Regional population density very low due to lack of water resources - Residual contamination from weapons testing in close proximity #### **Site Characteristics** - Thick (> 235 m), dry vadose zone of alluvial sediments - Less than 12 cm of rainfall per year - Arid shrubland potential evapotranspiration (ET) 12X precipitation - No evidence for percolation below plant root zone in last 10,000 – 15,000 years - No surface water or shallow groundwater - No mineral resources - Infertile soils ## **Operational History** - On-site low-level waste (LLW) disposal facility in operation since 1961 (> 50 years) - Predates DOE Waste Management Orders (1988) - Initial performance assessment approved 1998 - Off-site waste accepted since 1978 - Regional DOE disposal facility since 1997 - Accepts DOE LLW, Mixed LLW, Asbestiform waste, classified waste, and in the past has disposed transuranic (TRU) waste ## **Facility Design** - Most LLW disposed by shallow land burial (SLB) in unlined pits and trenches - Most waste containerized is wooden boxes, steel drums or boxes - Mixed LLW historically disposed in unlined pits and trenches - Mixed LLW currently disposed in a double lined RCRA-compliant cell - High specific activity and TRU waste disposed by Greater Confinement Disposal (GCD) in 36 m deep uncased boreholes - Facility relies on natural barriers for containment - Closure with a monolithic vegetated evapotranspirative cover planned ## **Conceptual Model** - No groundwater pathway - Release upward to surface soil and atmosphere - Conceptual model expectation - Volatiles in air (e.g., HTO, Rn-222) - Mobile nuclides in cover soil and biota (e.g., HTO, Tc-99, Pb-210) ## **Monitoring: Current Site Performance** - No water percolation below 2 m in vegetated weighing lysimeter (20 year record) - No evidence of water percolation into or through waste (15 year record) - No contamination ever detected in uppermost aquifer - Includes HTO measurements with a few pCi/I detection limit Air monitoring: HTO, ^{239,240}Pu, and ²⁴¹Am detected sporadically at levels well below Derived Concentration Standards ## **Future Inventory Uncertainty** - Inventory (volume and nuclide composition) will change over time - Significant change possible over decades long operational period - Data collection about generators' future waste can reduce uncertainty in the near-term - Economic and political factors are important in the long-term ## **Future Inventory Uncertainty (cont.)** - For example: In 1961 could we have predicted: - Funding increases/decreases - Changing mission (Chernobyl and Fukushima versus a nuclear renaissance) - Price of uranium - Nuclear arms control treaties - Changing regulations (RCRA, Nuclear Waste Policy Act, Waste Incidental to Reprocessing, 10 CFR 61 Update) - Changing transportation availability and cost - Availability/Unavailability of alternative disposal sites (government and commercial) - Stakeholder concerns - International events (Sept. 11, 2001 and dirty bombs) - All these issues have had some impact on inventory ## PA/CA Process: Design for Change - Inventory forecasting has limits Have to plan for change - Pre-operations - Estimate an inventory - Estimate performance, assess likelihood of compliance - Optimize a facility design - Derive waste acceptance criteria (WAC) (concentration/activity limits) - Operations under DAS - Assess WAC compliance (e.g., sum of fractions (SOFs) calculation) - All changes must be evaluated and reviewed - Revise PA and WAC as necessary - Closure - Final inventory known - Final performance estimated, confirm compliance #### PA Derived WAC: Action Levels Nevada National Security Site Waste Acceptance Criteria Action Level: **Disposal facility** radionuclide concentration that will comply with all performance objectives. - Not a waste package limit - Used to screen waste streams - Derived from the PA model - Minimum concentration meeting all performance objectives - Table E-1 in Waste Acceptance Criteria Nevada National Security Site Waste Acceptance Criteria Table E-1: Radionuclide Action Levels for Waste Characterization and Reporting | Nuclide | Action Level
(Bq m³) | Nuclide | Action Level
(Bq m ⁻³) | |--------------------|-------------------------|-------------------|---------------------------------------| | ³ H | 6.2E+11 | ²¹⁰ Pb | 3.5E+11 | | 14C | 5.4E+15 | ²²⁶ Ra | 2.1E+07 | | ²⁶ A1 | 9.7E+07 | ²²⁸ Ra | 1.7E+12 | | ³⁶ Cl | 1.9E+08 | ²²⁷ Ac | 1.7E+11 | | ³⁹ Ar | 9.9E+20 | 228Th | 4.3E+13 | | ⁴⁰ K | 9.4E+10 | 229Th | 2.8E+10 | | ⁴¹ Ca | 2.8E+12 | 230Th | 6.0E+07 | | ⁵⁹ Ni | 1.7E+14 | ²³² Th | 8.1E+09 | | ⁶³ Ni | 3.2E+14 | ²³¹ Pa | 1.0E+10 | | ⁶⁰ Со | 1.6E+12 | ²³² U | 4.3E+10 | | 85Kr | 2.0E+20 | ²³³ U | 8.2E+10 | | ⁹⁰ Sr | 4.3E+11 | ²³⁴ U | 1.3E+10 | | ⁹³ Zr | 1.1E+14 | ²³⁵ U | 1.1E+11 | | 93#Nb | 4.6E+15 | ²³⁶ U | 2.8E+11 | | ⁹⁴ Nb | 1.2E+10 | ²³⁸ U | 3.5E+11 | | ⁹⁹ Tc | 3.2E+09 | ²³⁷ Np | 3.4E+10 | | ¹⁰⁷ Pd | 2.9E+14 | ²³⁸ Pu | 1.8E+12 | | 113mCd | 6.2E+12 | ²³⁹ Pu | 5.1E+11 | | 121mSn | 2.1E+14 | ²⁴⁰ Pu | 5.2E+11 | | ¹²⁶ Sn | 1.1E+10 | 241 Pu | 5.8E+12 | | ¹²⁹ I | 3.4E+09 | ²⁴² Pu | 3.7E+11 | | 133Ba | 5.4E+12 | ²⁴⁴ Pu | 4.8E+10 | | ¹³⁵ Cs | 2.8E+12 | ²⁴¹ Am | 1.7E+11 | | ¹³⁷ Cs | 2.5E+11 | ²⁴³ Am | 5.8E+10 | | ¹⁵⁰ Eu | 9.4E+10 | ²⁴³ Cm | 8.3E+11 | | ¹⁵² Eu | 4.7E+11 | ²⁴⁴ Cm | 3.4E+12 | | ¹⁵⁴ Eu | 1.7E+12 | ²⁴⁵ Cm | 4.6E+10 | | ¹⁵¹ Sm | 2.4E+15 | ²⁴⁶ Cm | 9.2E+10 | | ^{166m} Ho | 1.2E+10 | ²⁴⁸ Cm | 2.9E+10 | | ²⁰⁷ Bi | 1.1E+11 | ²⁵⁰ Cf | 1.5E+12 | ## **Operations: Unreviewed Disposal Question (UDQ) Process** #### Purpose - To identify and document changes potentially affecting the Radioactive Waste Management Basis - PA, composite analysis, closure plan, disposal authorization, waste acceptance criteria, monitoring plan - Scope goes beyond waste stream reviews - To identify significant changes requiring additional analysis - Confirm PA performance objectives can be met - To notify National Nuclear Security Administration Nevada Field Office (NNSA/NFO) of significant changes that require their review and approval #### Step 1: Identify and describe proposed action For example: Disposal of new waste stream or nuclide #### Step 2: Evaluate proposed action against four criteria - Does the proposed action: - Involve a change in radionuclide inventory? - Require a change in facility design or closure plans; or require imposition of operational constraints or conditions? - Alter the likelihood of a feature, event, or process; or significantly change a parameter value? - Require a change in waste acceptance criteria, the performance assessment; or the disposal authorization statement? - Yes to any question identifies a potential UDQ - New waste streams are potential UDQs - Revised waste streams may be potential UDQs #### **Step 3: Exclude minor inventory changes** - Exclusions - Action level SOFs ≤ 1.0 - Action level SOFs ≤ 10, waste volume ≤ 100 m³ - Radionuclide without an action level, total inventory less than 3.7E7 Bq $$SOF = \sum_{i=1}^{n} \frac{\text{Representative Waste Concentration}_{i}}{\text{Action Level}_{i}}$$ $$SOF < 1$$ $Dose < Limit$ $$SOF = 1$$ $Dose = Limit$ #### **Step 4: Perform inventory screening** - Calculate available capacity SOFs - Available capacity Activity required to make site concentration equal to action level - If available capacity SOFs ≤ 0.01, proposed action is screened out of UDQ process Available Capacity $$SOFs = \sum_{i=1}^{n} \frac{\text{Representative Concentration}_{i} * \text{Volume}}{\text{Available Capacity}_{i}}$$ ## Step 5: Is proposed action covered by previous special analysis (SA)? - If yes, proposed action is not a UDQ - Waste stream revisions SA for earlier revision may apply to current revision if changes are not significant - Radionuclides without action level SA derived inventory limits #### Step 6: Proposed action is a positive UDQ - Perform SA to determine if proposed action can meet DOE Manual 435.1-1 performance objectives - Notify NNSA/NFO that waste stream acceptance is a significant change - NNSA/NFO will determine if Low-Level Waste Federal Review Group review is necessary #### **Resolution of Positive UDQs** #### New or revised waste streams - Evaluate with PA GoldSim model - Add waste stream inventory to disposed inventory - Run PA calculations - Compare results with DOE 435.1-1 Manual performance objectives - Document SA results in written document - If performance objectives are met, recommend approval without conditions - NNSA/NFO reviews SA and approves/disapproves waste stream - If performance objectives are not met, explore options - Alternative disposal options - Include waste form or container effects in model - Revise waste stream ## **UDQ Process: Experience** - ~ 10 years of operational experience - 150 200 potential changes identified/reviewed per year - <12 changes per year found to be significant (positive UDQs) - Common UDQs - Large radionuclide inventories or inventories increases (exceed action levels) - Radionuclides not evaluated in the PA (no action level) - Heat generation - Most are resolved in a few days ## **Annual Update** - PA group conducts an annual review of: - Site operations (including waste inventory disposed) - Facility design and management plans - Research developments and monitoring results - Annual review asks: - Does the PA need to be revised? - Has anything changed that would invalidate the PA? - Does the site comply with the performance objectives? - Annual re-calculation of PA results - Results published annually and reported to DOE/EM HQ ## **Defense Nuclear Stockpile Thorium Waste** - 11,600 cubic meters (m³) high purity Th - ²³⁰Th and ²²⁶Ra and exceeded WAC action levels - Potential to generate ²²²Rn - Special Analysis perfored - Thick (25 ft) mono-layer cover designed to attenuate Rn flux density ## **Summary** - The Area 5 RWMS is well suited for disposal of LLW - The radionuclide composition of waste has changed significantly over time - Changes must be identified, evaluated, reviewed, and approved - Changes are managed by: - Deriving WAC from the PA model - UDQ process applied to every new or revised waste stream - Annual review and updating of PA results